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We discuss the stability of icosadeltahedral shells subjected to a uniform external load in the form of an
isotropic pressure. We demonstrate that there exists a universal critical buckling pressure scaling form that
defines a locus of buckling instabilities. The parameter that uniquely determines this scaling form is shown to
be the Föppl–von Karman number of nonpressurized shells. Numerical results are interpreted in terms of
scaling forms for buckling instabilities of spheres and cylinders under isotropic mechanical pressure, and are
applied to the case of viruses under osmotic pressure.
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It has been experimentally demonstrated that microscopic
and nanoscopic capsules can buckle and even collapse under
external pressure, evaporation of solvent, or point forcing
�1,2�. In most of these cases, the studied capsules were
nearly spherical. Viruses represent an exception as they can
take on more complicated shapes. Even icosahedral viruses
that are studied in this article display a plethora of different
shapes, some of them nearly perfectly spherical, while others
have pronounced polyhedral shape and nearly flat faces �3�.
These viruses can be represented as triangulated shapes of
spherical topology with an icosa�delta�hedral backbone—this
is known as the principle of quasiequivlence and forms the
basis of the Caspar-Klug classification of icosahedral viruses
�4�. This also means that viruses can be thought of as con-
sisting of 10�T−1� clusters of hexamers and 12 clusters of
pentamers, where T is the triangulation number of the virus
�5,6�.

The central issue of this work is to explore whether and
how the equilibrium shape of an icosadeltahedral shell �viral
capsid in particular� influences its response to the external
isotropic pressure. This should be important for empty viral
capsids submitted to osmotic pressure of the external solu-
tion. The impenetrability of the viral capsid to the osmoti-
cant, such as polyethylene glycol �PEG�, gives rise to a me-
chanical pressure across the capsid shell that compresses it.
Experiments along these lines on complete virions are per-
formed on bacteriophages in PEG bathing solutions �7�.

By applying the continuum elasticity theory to viral
capsids �empty viruses�, Lidmar, Mirny, and Nelson �5�
�LMN� have shown that their shape can be understood in
terms of a single parameter, the so-called Föppl-von Kàrmàn
�FvK� number ��� given as

� = Y�R�2/� . �1�

Here Y and � are the two-dimensional Young’s modulus and
the bending rigidity of the viral protein sheet, respectively,
and �R� is the mean radius of the viral capsid. For � smaller

than about 250, the equilibrium shape of the capsid that
minimizes its elastic energy is practically a perfect sphere
�see Fig. 1�b���. When 250���5000, a continuous transi-
tion in equilibrium shape takes place and the capsids assume
a more aspherical shape. LMN have termed this the “buck-
ling transition” since the regions surrounding the pentagonal
disclinations �protein pentamers� “buckle outward,” away
from the interior of the sphere so that the surface surrounding
each of the disclinations is nearly conical �it should be un-
derstood that the buckling transition in the LMN terminology
is not a consequence of any external forcing of the capsid,
but simply results from the minimization of elastic energy of
the shell �8��. In the region 250���104, the shape of the
capsids can be represented as a union of 12 conical frusta
with apices at the icosahedron vertices, which are fastened
together at their bases �5,9�. This approximate representation
of the exact shape provides a good account of the energetics
of the shells �5,6�. In the range 104���106, the conical
description of the shell becomes less satisfactory �cf. Fig. 6
of Ref. �5� and Fig. 1�b�� since another creeping transition
takes place that flattens the icosahedron faces and sharpens
the regions around their edges. This effect has been ex-
plained by Witten and Li �10� and Lobkovsky �11� as origi-
nating from the stretching energy along the edges, which
becomes prohibitively large as the shell size increases �or as
� increases� and the curvature remains distributed along a
large area of the shell. The scaling relations that are charac-
teristic for the ridge sharpening are observed �5� when �
�106. The borders of different regimes of the FvK number
are quite smeared, especially towards the ridge-sharpening
regime, since the transitions in shell shapes are continuous
�5�.

Since the equilibrium shape of the capsid or shell changes
with its FvK number, we could a priori expect that the re-
sponse of the shells to external forcing in the form of an
isotropic pressure is also strongly influenced by its FvK
number. An intriguing question to pose in this context is
whether the FvK number uniquely determines the elastic re-
sponse of the shells to an external pressure. This has in fact
been proven in Ref. �12� in as far as it concerns the depen-
dence of the elastic susceptibility of shells, subjected to ex-*asiber@ifs.hr
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ternal forcing, on their FvK number. In contrast, moreover,
we shall be interested in the �inward� buckling �8� of shells
under pressure, which leads to a loss of icosahedral symme-
try and a discontinuous change in the shell volume.

We model the shell as a polyhedron with icosahedral or-
der whose neighboring vertices are connected with springs,
so that the stretching energy is given by

Hs =
�

2�
i,j

��ri − r j� − a�2, �2�

where � is the spring constant, a is the equilibrium separation
of the neighboring �i and j� vertices, and ri is the vector

pointing at the ith vertex. The bending energy of the shell is
given by

Hb =
�̃

2 �
I,J

�nI − nJ�2, �3�

where I and J are two polyhedron faces sharing an edge and
nI �nJ� is the unit normal of the Ith �Jth� face. The macro-
scopic elasticity constants of the shell material can be de-
rived from � and � as demonstrated in Ref. �5�, so that the
Young’s modulus is Y =2� /	3, the �mean� bending rigidity
�=	3�̃ /2, the Gaussian bending rigidity �G=−4� /3, and the
Poisson ratio �=1 /3. The shape of the shell under external
pressure �p� is found by minimizing the total Hamiltonian of
the problem,

H = Hs + Hb + pV , �4�

where V is the shell volume. For a given shell T number and
parameters a, �, and �, the nonpressurized shape of the shell
is uniquely determined by its FvK number. Upon increasing
the pressure, the shape that minimizes H in Eq. �4� changes;
i.e., the shell deforms. We perturb the thus obtained shape by
adding a random displacement to each of the vertices, ri�
=ri+uei, where ei is a random three-dimensional unit vector,
different for each vertex, and u is the amplitude of the dis-
placement. The perturbed shape can be thought of as a par-
ticular conformation excited by �low-, u	a� temperature
fluctuations. The perturbation has in general nonvanishing
projections on each of the vibrational eigenmodes of the
shell �see below�. We then again minimize the energy of the
perturbed shape. For pressures below a critical value, the
shape equilibrates back to the unperturbed state with icosa-
hedral symmetry. However, at some critical pressure �pc�, the
new conformation that is adopted by the shell differs from
the unperturbed state; i.e., a discontinuous transition in the
shell shape parameters and volume is observed. We assume
that this shape transition takes place prior to the complete
rupture of the shell. This assumption is consistent with ex-
periments on empty bacteriophage capsids, which are shown
to withstand large forces and indentations by the tip of an
atomic force microscope �
6 nm� prior to the onset of non-
linear response and possible rupture �13�. To relate our re-
sults with those on nonpressurized icosadeltahedral shells
�5,6� and continuum theories of shell instability �15,16�, we
shall be particularly interested in shells with large T num-
bers. The results should be therefore directly applicable to
viruses with large number of protein subunits, although the
numerical simulations can be even more easily performed for
shells with small T numbers.

Deformations of elastic shells subjected to external forces
are known to belong to two distinct categories, depending on
their elastic parameters. It has been experimentally demon-
strated that deformations of a clamped half-cylindrical sur-
face under point forcing �17� and the gravity-induced drap-
ing of naturally flat, isotropic sheets can be understood in
terms of the creation of conical singularities �the so-called d
cones� �18�. This means that the energy of deformation is
dominantly of the bending type. On the other hand, the
crumpling of a sheet of paper has been described as domi-

FIG. 1. �Color� �a� Scaled critical pressures �symbols� of the
icosadeltahedral shells with �=1 and T=441 ���, �=10 and T
=441 �
�, �=5 and T=100 �squares�, �=5 and T=49 �circles�, and
�=4 and T=73 �triangles� as a function of the FvK number �. In
these calculations, u=0.005a, � was kept fixed, and � was varied so
as to produce a variation in �. Thick dashed lines show scalings
with � as discussed in the text. The insets show the buckled shell
shapes for different FvK numbers as denoted. �b� The energetics of
nonpressurized shells as a function of �. The regimes in which the
shell can be represented as a sphere, an assembly of cones or ridges
is indicated. Analytical expressions for the shell energetics are in-
dicated by solid �sphere�, dashed �cones�, and dotted �ridges� lines
�5�. Lines connecting neighboring disclinations in the nonpressur-
ized state are indicated as dashed lines in the insets.
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nated by the generation of narrow stretching ridges �19�. In
this case, the energetics of deformation is steered by an in-
terplay between bending and stretching contributions to elas-
tic energy �11�. Both types of deformations can be seen in
the shapes and energetics of equilibrium nonpressurized
icosadeltahedral shells in different regimes of their FvK
number �5�. Thus, we expect that the same two types of
deformations should also be seen in the energetics of the
shell buckling and this is one of the central issues of this
work.

LMN have demonstrated �5� that the elastic energy of
nonpressurized shells scales as E��f���, where the function
f��� assumes different forms depending on the value of �. A
simple analysis suggests that if there is universality in the
critical pressure and if it is related to the nonpressurized
energetics and shape of the shell, it should reveal itself in the
scaling pc�→pc�R�3 /�, where �R� is the mean radius of the
nonpressurized shell. The results presented in Fig. 1�a� con-
vincingly demonstrate the universality in pc�. This figure dis-
plays the scaled critical pressures pc� as a function of FvK
number of the shell in the nonpressurized state. Note that the
thus rescaled pressures for shells of different elastic proper-
ties �Y and �� and T numbers �i.e., �R� if a is fixed� all fall on
the same universal curve, which we denote by U���. The
critical pressure thus assumes a scaling form

pc =
�

�R�3U��� , �5�

where U��� is a complicated scaling function.
What is the nature of the instability at p= pc? Examination

of the calculated shapes just above the critical pressure �see
insets in Fig. 1�a�� shows that they display various types of
inward buckling �8� �see below�. The inward buckling of
shells at the instability point pc can be elucidated by analyz-
ing their elastic eigenmodes as a function of pressure. These
are obtained by diagonalizing the Hessian matrix of the
Hamiltonian in Eq. �4�—viz., �2H /�ri�r j. At critical pressure
there emerges an elastic soft mode, with zero eigenfre-
quency, that points to the existence of an instability of the
shell with respect to the deformation in the direction of the
eigenvectors of the soft mode. A similar type of soft-mode
analysis has been successfully applied to the case of a ridge-
buckling instability �20�. We find that the eigenvector con-
figurations of the soft modes, describing different unstable
elastic deformations, depend crucially and solely on �, cor-
roborating the scaling form, Eq. �5�. Furthermore, the soft
mode breaks the symmetry of the shell and steers its shape
towards inward buckling.

Analytical approaches to �inward� shell buckling and col-
lapse, even for perfectly spherical shells, are enormously
complex and have occupied applied mathematicians and en-
gineers for decades �see, e.g., Ref. �14��. This body of fun-
damental work enables us to gain valuable insight into our
numerical results by providing analytical approximations to
the scaling function U��� derived in the context of �inward�
buckling of spheres �14–16� and cylinders �16� under exter-
nal isotropic loads. Namely, although the shapes of both
pressurized and unpressurized shells are fairly complex, their

surface can be separated into regions that are locally isomor-
phous to spheres �two finite radii of curvature� or cylinders
�one radius of curvature tending to infinity�, depending on
the FvK number. We thus expect that the scaling function
U��� of the form that corresponds to buckling pressures of
spheres and cylinders should be seen in our numerical data in
different regimes of �.

For FvK numbers smaller than about 250, the equilibrium
shape of the unpressurized shell is practically a perfect
sphere �5,6�. Therefore, the critical pressures should be pro-
portional to

pc
sphere �

�	�

�R�3 , �6�

which is an expression for �inward� buckling pressure of thin
spheres �15,16�. The 	� scaling is exactly what we observe
numerically in the region 90���250, as can be clearly
seen from Fig. 1. A deviation from this scaling occurs for
��90. Note, however, that for a shell made of a uniform
elastic material, �=12�1−�2��R /d�2, where d is the effective
thickness of the shell. Thus, for ��90, R /d is no longer
negligible and an expression for thin shells in Eq. �6� be-
comes inapplicable. For shells that underwent the outward
buckling �8� transition in their nonpressurized state, the shell
surface is nearly conical around the pentagonal disclinations
�protein pentamers�—i.e., it is locally cylindrical—so that
the critical pressure should be proportional to �16�

pc
cylinder �

�

Rcyl
3 , �7�

where Rcyl is the maximum radius of the cylindrical regions
of the shell. This in its turn suggests that the deformation
leading to inward buckling is concentrated at the midpoints
of icosahedron faces. The maximum radii of the cones are
Rcyl
�R�, so that the critical pressures should be indepen-
dent of �—i.e., U����const. This can be clearly discerned
also from numerical results for 300���3000. As the FvK
number increases further, the shell shape just prior to �in-
ward� buckling shows flattening of the faces and concentra-
tion of curvatures along the icosahedral ridges, so that the
radius of cylindrical regions immediately before �inward�
buckling notably decreases from its nonpressurized value.
This can be seen as an increase in the critical pressure—i.e.
its deviation from the constant value predicted by Eq. �7�.
Note also that the description of shells in terms of cones
becomes inaccurate when 104���106 �see Fig. 1�b�� and
neither ridges nor cones provide an adequate description of
the shell shape in this region of FvK numbers, since the
curvature along ridges scales in a complicated way with R
and �. When ��106, the ridge-sharpening transition gradu-
ally takes place and the characteristic curvature radii of �non-
pressurized� ridges scale as �11� Rcyl� �R��−1/6, which means
that the critical pressures should scale as

pc
ridge �

�

Rcyl
3 �

�	�

�R�3 , �8�

which is functionally the same as for shells that are spherical
in their nonpressurized state ���250; see Eq. �6��, but for
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different reasons. The scaling of pc with 	� in this regime is
again strongly suggested by our numerical results.

A useful addition to this analysis can be obtained from a
study of buckled shapes after the instability. However, in
order to do this, one has to account for interactions between
vertices that are not nearest neighbors since the buckling
shell shows a tendency to self-intersect �this effect may even
lead to formally negative volumes of the buckled shells�.
This means that topologically distant regions of the shell
may become physically close in the buckled shape. We have
approximately accounted for this effect by positioning a soft,
exponentially repulsive potential in the geometrical center of
the shell in its nonpressurized state. This potential acts on all
vertices of the shell. We have checked that such a device
does not change the critical pressures significantly and that
various choices of the parameters of the potential �all of
which produce nearly the same critical pressures as in the
case of zero mean-field potential� do not influence the buck-
led shape in any important aspect. We have also found that
the buckled shapes are compatible with the displacement pat-
terns of the soft modes that lead to instability which gives
additional credibility to our method.

The equilibrium shapes for pressures just above pc—i.e.,
just after the �inward� buckling instability �see insets in Fig.
1�a��—show a very complicated structure that we analyze
only in broad outlines. For each particular � the character of
the buckled shape is directly related to the symmetry of the
corresponding soft mode calculated before. For ��250
buckled shells can be described as spheres with several in-
verted spherical caps �21� �three in the case of shape with
�=190�. The icosahedral nature of the shell apparently does
not interfere with the buckling event as can be seen from the
total inversion of several pentagonal disclinations. This is not
the case for the shape with �=1520, whose disclinations re-
main prominent even in its buckled state, characterized by an
inversion of regions surrounding the lines connecting two
disclinations in the nonpressurized state �denoted by dashed
lines in the insets� and corresponding to incipient icosahedral
ridges for higher FvK numbers. A similar buckling scenario
is even more evident for �=85 000. This shape can be de-
scribed as a network of meandering ridges connecting pen-

tagonal disclinations and bordering the large valleylike re-
gions of inverted curvature. Note also that the ridges in the
buckled state often meet in triplets at positions that are close
to the centers of icosahedral faces in the nonpressurized
state. Upon yet further increase, for �=1 500 000, one ob-
serves that the ridges break up at the expense of prominent
popping out of the icosahedron faces that they border. Alter-
natively, this mechanism can also be described as the repo-
sitioning of the ridges and creation of new ridge meeting
points close to the centers of the icosahedral faces in the
nonpressurized state.

Note also that the change in volume upon buckling pro-
gressively decreases as the FvK number increases. The na-
ture of the reduction in volume can be particularly clearly
discerned for shells with ��104. In this case the ridges sur-
rounding a face become unstable, break down, and invert,
pushing the regions of large curvature towards other ridges
that absorb it. Concurrently the ridges merge forming triplets
at meeting points, usually at the center of the face that was
bordered by the three collapsing ridges. In this way a large
area of inverted curvature is formed that leads directly to a
reduction in the shell volume.

We have shown that the salient features of our numerical
results on the �inward� buckling of elastic icosadeltahedral
shells under uniform external pressures can be understood on
the basis of buckling instability pressures characteristic of
surfaces with spherical and cylindrical topology. Since for
viral capsids the estimated bending rigidity is �
40kBT �6�
�a lower value of about �10–15�kBT has been found in Ref.
�22�� and a typical radius is �R�
30 nm �for, e.g.,

-bacteriophage�, one is led to critical pressures of about
pc
5 atm in the regime of FvK numbers that are typical for
large viruses �
103�. The pressures of this order of magni-
tude can be easily achieved in experiments with empty viral
shells by applying the appropriate osmotic stress �7�.
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